

higher education & training

Department: Higher Education and Training REPUBLIC OF SOUTH AFRICA

NATURAL SCIENCES (NATS4)

NOTES AND ACTIVITY - US 7509

LESSION 16

UNPACKING SBA

THEME: <u>Energy and Change</u>

TOPIC: Work and Power

At the end of this unit, you should be able to:

- 1. Define work done and power.
- 2. Explain the relationship between work done and power.
- 3. Apply formulae in calculations.

A. WORK

- When an applied force causes an object to move, *work* is being done on the object by the force
- Work is the measure of energy transfer when a **force (F)** moves an object through a **distance (d)**
- So when work is done, energy is being transferred from one form to another, i.e. energy transferred = work done
- Since work is a transfer of energy, work and energy are measured in the same unit called *joule* (J), a unit named after an English scientist James Prescott Joule, who studied the relationship between *heat, work and energy.*

FORMULA FOR WORK DONE

$work = force \times distance$

Where : force is measured in newton (N) : distance is measured in meter (m)

NOTE!!!

Force is a pull or push phenomenon and it is the product of an object's *mass* (measured in kg) and its *acceleration* (measured in m.s⁻²):

Force = mass x acceleration

- For *horizontal* motion, the symbol for acceleration is, *a*
- For *vertical* motion. The symbol for acceleration is, $g = 10 \text{ m.s}^{-2}$

WORKED EXAMPLES

1. Determine whether work is done on the following:

SCENARIO	ANSWER	EXPLANATION	
A lady pushes a trolley to	Work is done	A lady applies a pushing force	
buy groceries		on the trolley and the trolley	
		moves a certain distance	
A school bag is left on	No work is done	A school bag exerts a force	
top of a table		on the table but the table nor	
		the bag moves	

2. Calculate work done if

Solly is pulling a table with a force of 5 newtons over a	Data
distance of 10 meters.	Force = $5N$ W = F x d
	Distance = $10m = 5 \times 10$
	Work = ? $= 50$ joules (J)
A toy car of mass 0.5.kg accelerates at 3 m.s ⁻² covering	Data
a distance of 2 meters.	Mass = 0.5 kg F = m x a
	Acceleration = 3 m.s^{-2} = 0.5 x 3
	Distance = 2 meters = 4.5 N
	$W = F \times d$
	= 4.5 x 2
	= 9 J

B. POWER

Power is the rate at which work is done. It is a measure of how quickly one form energy is converted to another.

Power is measured in *watt (W)*. The unit is named after James Watt. A watt is a small unit, so we often use kilowatts (1kW = 1 000W)

FORMULA FOR POWER

power (in watts) = $\frac{\text{work done (in joules)}}{\text{time(in seconds)}}$

• When 1 joule of work is done in 1 second then the power used is 1 watt.

WORKED EXAMPLE

A crane lifts a 2 000 kilogram load of concrete to a height of 8 metres in 16	STEP 1: Calculate work done	
seconds. How much power does it use?	Work = force x distance	
	= mass x \boldsymbol{g} x distance ($\boldsymbol{g} = 10m.s^{-2}$)	
	= 2 000 x 10 x 8	
	= 160 000 J	
	STEP 2: Substitute work done and time	
	$power = \frac{work \ done}{time}$	
	$=\frac{160\ 000}{16}$	
	= 10 000 W	
	= 10 kW	
	N.B : 10 000 W is divided by 1000 to get 10 kW	

ACTIVITY

1. Study Figure 1 and 2, and determine whether work is done or not.

2. Study the diagram and answer the questions.

2.1 Calculate the amount of work done by the lady. (3)
Work = force x distance
2.2 What is the name of the force acting in the opposite direction to the 50 N applied by the lady on the trolley? (2)

2.3	If the power is increased, does the work done INCREASE, REMAIN CONSTANT or DECREASE? Justify.	(3)
	so in applied by the lady of the trolley?	(2)

Compiler: C Tshabalala