

Department:
Higher Education and Training REPUBLIC OF SOUTH AFRICA

NATURAL SCIENCES (NATS4)

NOTES AND ACTIVITY - US 7509

LESSION 16

UNPACKING SBA

THEME: Energy and Change

TOPIC: Work and Power

At the end of this unit, you should be able to:

1. Define work done and power.
2. Explain the relationship between work done and power.
3. Apply formulae in calculations.

A. WORK

- When an applied force causes an object to move, work is being done on the object by the force
- Work is the measure of energy transfer when a force (F) moves an object through a distance (d)
- So when work is done, energy is being transferred from one form to another, i.e. energy transferred = work done
- Since work is a transfer of energy, work and energy are measured in the same unit called joule (J), a unit named after an English scientist James Prescott Joule, who studied the relationship between heat, work and energy.

FORMULA FOR WORK DONE

$$
\text { work }=\text { force } \times \text { distance }
$$

Where : force is measured in newton (N) : distance is measured in meter (m)

Force is a pull or push phenomenon and it is the product of an object's mass (measured in kg) and its acceleration (measured in $\mathrm{m} . \mathrm{s}^{-2}$):

$$
\text { Force }=\text { mass } \times \text { acceleration }
$$

- For horizontal motion, the symbol for acceleration is, a
- For vertical motion. The symbol for acceleration is, $\boldsymbol{g}=10 \mathrm{~m} . \mathrm{s}^{-2}$

WORKED EXAMPLES

1. Determine whether work is done on the following:

SCENARIO	ANSWER	EXPLANATION
A lady pushes a trolley to buy groceries	Work is done	A lady applies a pushing force on the trolley and the trolley moves a certain distance
A school bag is left on top of a table	No work is done	A school bag exerts a force on the table but the table nor the bag moves

2. Calculate work done if

Solly is pulling a table with a force of 5 newtons over a distance of 10 meters.	Data Force $=5 \mathrm{~N}$ Distance $=10 \mathrm{~m}$ Work = ?	$\begin{aligned} \mathrm{W} & =\mathrm{F} \times \mathrm{d} \\ & =5 \times 10 \\ & =50 \text { joules }(\mathrm{J}) \end{aligned}$
A toy car of mass 0.5 kg accelerates at $3 \mathrm{~m} . \mathrm{s}^{-2}$ covering a distance of 2 meters.	Data Mass $=0.5 \mathrm{~kg}$ Acceleration $=3 \mathrm{~m} . \mathrm{s}^{-2}$ Distance $=2$ meters	$\begin{aligned} F & =m \times a \\ & =0.5 \times 3 \\ & =4.5 \mathrm{~N} \end{aligned}$ $\begin{aligned} \mathrm{W} & =\mathrm{F} \times \mathrm{d} \\ & =4.5 \times 2 \\ & =9 \mathrm{~J} \end{aligned}$

B. POWER

Power is the rate at which work is done. It is a measure of how quickly one form energy is converted to another.

Power is measured in watt (W). The unit is named after James Watt.
A watt is a small unit, so we often use kilowatts $(1 \mathrm{~kW}=1000 \mathrm{~W})$

FORMULA FOR POWER

$$
\text { power }(\text { in watts })=\frac{\text { work done (in joules) }}{\text { time(in seconds) }}
$$

- When 1 joule of work is done in 1 second then the power used is 1 watt.

WORKED EXAMPLE

A crane lifts a 2000 kilogram load of concrete to a height of 8 metres in 16 seconds. How much power does it use?	STEP 1: Calculate work done STEP 2: Substitute work done and time $\begin{aligned} \text { power } & =\frac{\text { work done }}{\text { time }} \\ & =\frac{160000}{16} \\ & =10000 \mathrm{~W} \\ & =10 \mathrm{~kW} \end{aligned}$ N.B: 10000 W is divided by 1000 to get 10 kW

ACTIVITY

1. Study Figure 1 and 2, and determine whether work is done or not.

2. Study the diagram and answer the questions.

A lady pushes a trolley with a force of 50 N on a horizontal plane covering a 12 m distance.

2.1 Calculate the amount of work done by the lady.

$$
\text { Work = force } \mathrm{x} \text { distance }
$$

2.2 What is the name of the force acting in the opposite direction to the 50 N applied by the lady on the trolley?
2.3 If the power is increased, does the work done INCREASE, REMAIN CONSTANT or DECREASE? Justify.

Compiler: C Tshabalala

