higher education \& training

Mathematical Sciences: MMSC4
 LESSON 10

US: 7449-SO1

LESSON OBJECTIVES

1. Learners must be able to identify ratio and proportions in mathematical context.
2. Learners should be able to analyse ratios and proportions in terms of percentages
3. Learners should able to use ratios and proportions in order to calculate percentages.
4. Learners should be able to calculate rates of increase in various mathematical context
5. Learners should be able to determine measures of central tendency and use them to make decisions

STEP 1 INTRODUCTION

- Describe the following paired shapes, how do they look?

- The paired shapes look very similar to one another.
- You learned about enlargement in transformation, in the previous lessons.
- Enlargements deal with two same shapes but of different sizes.
- Enlargements come about as a result of a scale factor.
- The length of one shape divided by the length of the other, gives us a ratio what is called the scale factor.
- Therefore the shapes are in proportion to one another.

STEP 2 Worked Examples.

- Here are two similar shapes again:

- The ratio of triangle A base length to triangle B base length is $5 / 15=1 / 3$.
- Therefore side x for triangle B is $3 \times 3 / 1=9 \mathrm{~cm}$.

1. A photograph is 12 cm wide and 8 cm tall. It is enlarged in the ratio $3: 2$. What are the dimensions of the enlargened photograph?

- This means the width is increased in the ratio of $3: 2$ and so is the height.
- Therefore new width is equal to $12 / 1 \times 3 / 2$ which is equal to 18 cm .
- Similarly, the new height is $8 / 1 \times 3 / 2$ which is equal to 12 cm .
- You can check if the ratio of image to orignal object is indeed $3: 2$ by just dividing 18 by 12 like $18 / 12$ which is indeed equal to $3: 2$.
- We can comfortably say that the two photographs are in proportion to one another.

STEP 2 Example 1 continued(Expressing the increase in percentage)

- Remember percent means in every 100 or per 100.
- The dimension increased from 12 to 18 an increase of $(18-12)=6$.
- As a percentage the increase is at $\mathbf{6 / 1 2}$ multiply by 100% which is equal to 50\%.
- Similarly the increase on the height is also 50% thus ($4 / 8 \times 100 \%$)

ACTIVITY 1

Work out the following questions.
a) A map measuring $\mathbf{6 0} \mathbf{~ c m}$ by $\mathbf{2 5 c m}$ is reduced in the ratio of $\mathbf{3 : 5}$. Calculate the final dimensions of the map.
b) Express the decrease in dimensions of the map above as a percentage

STEP 3 Example 2

- The salary of a certain technician increased from R10000 to R10500 after one year. Express the inrease as a percentage.
Increase $=$ R10500 $\mathbf{R 1 0 0 0 0}=$ R500
- Increase \% =increase/orignal salary multiply by100\%=500/10000 x 100\%
- Which is to 5%
- If the salary increased at the same rate in the following year, how much was the new salary?
- New increase is $5 \% \times R 10500=5 / 100 \times 10500=R 525$
- Therefore new salary $=\mathbf{R 1 0 5 0 0} \mathbf{+} \mathbf{R 5 2 5}=\mathbf{R 1 1 0 2 5}$

ACTIVITY 2

- The graph below shows an engineers wage record in rands. His wage package consists of a fixed minimum charge which is added to an hourly charge and this makes up his monthly eanings.

1) What is the engineers fixed minimum charge?
2) Using the graph determine how much does the engineer earn when he works for five hours in a month?
3) How much is his hourly rate?
4) If the engineers hourly rate is increased by 10% in the following year due to inflation, determine how much the new hourly rate would be.?
higher education \& training
Department:
Higher Education and Training REPUBLIC OF SOUTH AFRICA

GRAPH SHOWING AN ENGINEERS WAGE RECORD

STEP 4 MEASURES OF CENTRAL TENDENCY ANALYSIS

The table below shows the record of temperature for a technician office from 07:00hours to 19:00hours on one of the busiest day and coldest day of the winter season

TIME	TEMPERATURE READING IN DEGREES CELCIUS
$07: 00$	10
$09: 00$	15
$11: 00$	20
$13: 00$	25
$15: 00$	25
$17: 00$	22
$19: 00$	18

a) Determine the mean temperature of the day?
b) Calculate the median of the temperature readings?
c) State the modal temperature reading of this day?

SOLUTIONS

a) MEAN (Average) $=$ sum Divided by number of data items.
$=\quad(10+15+20+25+25+22+18) / 7$
$=135 / 7$
$=\quad 19.285$
$=\quad 19.3$ corr to 2 dp
b) MEDIAN
$=\quad$ First arrange data items in ascending order.
$=10 ; 15 ; 18 ; 20 ; 22 ; 25 ; 25 ;$
$=\quad 20$ is the median
c) MODE $=25$ Because it appears most than any other

ACTIVITY 3

The table below contains the mathematics exam results of some learners in June and December ;

June Exam	December Exam
85	46
25	65
25	60
30	55
80	54
70	60
40	50
20	50
85	55
90	55

a. Determine the mean, mode and median of the learners performance in both exams?
b. What do you notice about their performance, motivate your answer?
c. In which exam did the learners perform better overal? Give areason for your answer?

